Abstract

It is often desirable to partially or completely shut down a Loop Heat Pipe (LHP), for example, to maintain the temperature of electronics connected to the LHP on a satellite during an eclipse. The standard way to control the LHP is to apply electric power to heat the compensation chamber, as required. The amount of electrical power to shut down an LHP during an eclipse on orbit is generally reasonable. On the other hand, for LHPs on Lunar and Martian Landers and Rovers, the electrical power requirements can be excessive. For example, the Anchor Node Mission for the International Lunar Network (ILN) has a Warm Electronics Box (WEB) and a battery, both of which must be maintained in a fairly narrow temperature range using a variable thermal conductance link. During the Lunar day, heat must be transferred from the WEB to a radiator as efficiently as possible. During the night, heat transfer from the WEB must be minimized to keep the electronics and batteries warm with minimal power, even with a very low (100 K) heat sink. A mini-LHP has the highest Technology Readiness Level, but requires electrical power to shut-down during the 14-day lunar night, with a significant penalty in battery mass: 1 watt of electrical power translates into 5kg of battery mass. A mini-LHP with a Thermal Control Valve (TCV) was developed to shut down without electrical power. An aluminum/ammonia LHP which included a TCV in the vapor exit line from the evaporator was designed, fabricated and tested. The TCV could route vapor to the condenser, or bypass the condenser and route back to the compensation chamber, depending upon the temperature conditions. During test, the LHP condenser was decreased to -60oC and the power input was decreased to near zero power: the evaporator remained above 0oC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.