Abstract
Structural maintenance of chromosomes (SMC) complexes play a crucial role in organizing the three-dimensional structure of chromatin, facilitating key processes such as gene regulation, DNA repair, and chromosome segregation. This review explores the molecular mechanisms and biological significance of SMC-mediated loop extrusion complexes, including cohesin, condensins, and SMC5/6, focusing on their structure, their dynamic function during the cell cycle, and their impact on chromatin architecture. We discuss the implications of impairments in loop extrusion machinery as observed in experimental models and human diseases. Mutations affecting these complexes are linked to various developmental disorders and cancer, highlighting their importance in genome stability and transcriptional regulation. Advances in model systems and genomic techniques have provided deeper insights into the pathological roles of SMC complex dysfunction, offering potential therapeutic avenues for associated diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.