Abstract

Manipulating light by adding and subtracting individual photons is a powerful approach with a principal drawback: the operations are fundamentally probabilistic and the probability is often small. This limits not only the fundamental scalability but also the number of operations that can be applied in realistic experimental settings. We propose and analyze a loop-based technique which can significantly increase the probability of success while preserving the quality of the photon subtraction. We show the improvement both in single mode preparation and manipulation of non-Gaussian states with negative Wigner functions and in two-mode entanglement distillation protocol with Gaussian states of light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.