Abstract

A fundamental question is whether groups of nodes of a complex network can possibly display long-term cluster-synchronized behavior. While this question has been addressed for the restricted classes of unweighted and labeled graphs, it remains an open problem for the more general class of weighted networks. The emergence of coordinated motion of nodes in natural and technological networks is directly related to the network structure through the concept of an equitable partition, which determines which nodes can show long-term synchronized behavior and which nodes cannot. We provide a method to detect the presence of nearly equitable partitions in weighted networks, based on minimal information about the network structure. With this approach we are able to discover the presence of dynamical communities in both synthetic and real technological, biological, and social networks, to a statistically significant level. We show that our approach based on dynamical communities is better at predicting the emergence of synchronized behavior than existing methods to detect community structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.