Abstract

Malaria control is heavily dependent on the use of insecticides that target adult mosquito vectors via insecticide treated nets (ITNs) or indoor residual spraying (IRS). Four classes of insecticide are approved for IRS but only pyrethroids are available for ITNs. The rapid rise in insecticide resistance in African malaria vectors has raised alarms about the sustainability of existing malaria control activities. This problem might be particularly acute in Côte d’Ivoire where resistance to all four insecticide classes has recently been recorded. Here we investigate temporal trends in insecticide resistance across the ecological zones of Côte d’Ivoire to determine whether apparent pan-African patterns of increasing resistance are detectable and consistent across insecticides and areas. We combined data on insecticide resistance from a literature review, and bioassays conducted on field-caught Anopheles gambiae mosquitoes for the four WHO-approved insecticide classes for ITN/IRS. The data were then mapped using Geographical Information Systems (GIS) and the IR mapper tool to provide spatial and temporal distribution data on insecticide resistance in An. gambiae sensu lato from Côte d’Ivoire between 1993 and 2014. Bioassay mortality decreased over time for all insecticide classes, though with significant spatiotemporal variation, such that stronger declines were observed in the southern ecological zone for DDT and pyrethroids than in the central zone, but with an apparently opposite effect for the carbamate and organophosphate. Variation in relative abundance of the molecular forms, coupled with dramatic increase in kdr 1014F frequency in M forms (An. coluzzii) seems likely to be a contributory factor to these patterns. Although records of resistance across insecticide classes have become more common, the number of classes tested in studies has also increased, precluding a conclusion that multiple resistance has also increased. Our analyses attempted synthesis of 22 years of bioassay data from Côte d’Ivoire, and despite a number of caveats and potentially confounding variables, suggest significant but spatially-variable temporal trends in insecticide resistance. In the light of such spatio-temporal dynamics, regular, systematic and spatially-expanded monitoring is warranted to provide accurate information on insecticide resistance for control programme management.

Highlights

  • Malaria control is heavily dependent on the use of insecticides that target adult mosquito vectors via insecticide treated nets (ITNs) or indoor residual spraying (IRS)

  • Bioassay data and species distributions A total of 323 data points were obtained from studies conducting insecticide resistance bioassays using World Health Organization (WHO) tubes [20], originating from 57 collection sites covering the period from 1993 to 2014 (Additional file 2a)

  • Pyrethroid and organochlorine susceptibility was tested in 56 sites (Additional file 3 and Additional file 4); organophosphates and carbamates in 24 sites (Additional file 5 and Additional file 6) almost entirely located in ecological zones 1 and 2

Read more

Summary

Introduction

Malaria control is heavily dependent on the use of insecticides that target adult mosquito vectors via insecticide treated nets (ITNs) or indoor residual spraying (IRS). Four classes of insecticide are approved for IRS but only pyrethroids are available for ITNs. The rapid rise in insecticide resistance in African malaria vectors has raised alarms about the sustainability of existing malaria control activities. Resistance to carbamates and organophosphates, the available alternatives for IRS, is being reported [5,6,7,8], and resistance to all four classes has been found in wild mosquitoes from southern Côte d’Ivoire [7] In recognition of this alarming situation, the WHO recently launched the Global Plan for Insecticide Resistance Management [3] with five strategic pillars, the first two of which are (i) planning and application of insecticide resistance management strategies; and (ii) surveillance of resistance. Both of these pillars require data on the presence and dynamics of insecticide resistance at country level

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.