Abstract

Abstract. This paper presents a procedure for performing and optimizing inversions for DOAS tomography and its application to measurement data. DOAS tomography is a new technique to determine 2- and 3-dimensional concentration fields of air pollutants or other trace gases by combining differential optical absorption spectroscopy (DOAS) with tomographic inversion techniques. Due to the limited amount of measured data, the resulting concentration fields are sensitive to the inversion process. Therefore detailed error estimations are needed to determine the quality of the reconstruction. In this paper we compare different row acting methods for the inversion, present a procedure for optimizing the parameters of the reconstruction process and propose a way to estimate the error-fields by numerical studies. The procedure was applied to data from the motorway emission campaign BAB II. Two dimensional NO2 cross sections at right angles to the motorway could be reconstructed qualitatively well at different meteorological situations. Additionally we present error fields for the reconstructions which show the problems and skills of the used measurement setup. Numerical studies on an improved setup for future motorway campaigns show, that DOAS tomography is able to produce high quality concentration maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.