Abstract

We study the prospects of a displaced-vertex search of sterile neutrinos at the Large Hadron Collider (LHC) in the framework of the neutrino-extended Standard Model Effective Field Theory (νSMEFT). The production and decay of sterile neutrinos can proceed via the standard active-sterile neutrino mixing in the weak current, as well as through higher-dimensional operators arising from decoupled new physics. If sterile neutrinos are long-lived, their decay can lead to displaced vertices which can be reconstructed. We investigate the search sensitivities for the ATLAS/CMS detector, the future far-detector experiments: AL3X, ANUBIS, CODEX-b, FASER, MATHUSLA, and MoEDAL-MAPP, and at the proposed fixed-target experiment SHiP. We study scenarios where sterile neutrinos are predominantly produced via rare charm and bottom mesons decays through minimal mixing and/or dimension-six operators in the νSMEFT Lagrangian. We perform simulations to determine the potential reach of high-luminosity LHC experiments in probing the EFT operators, finding that these experiments are very competitive with other searches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.