Abstract

Lysophosphatidylcholine (LysoPtdCho) and lysophosphatidylethanolamine (LysoPtdEtn), which are formed by phospholipase A2-catalyzed hydrolysis of phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn), respectively, are proposed to be involved in protein kinase C (PKC) activation. Their physiological significance, however, remains unclear. We examined the effects of lysoPtdCho and lysoPtdEtn on acetylcholine (ACh) receptor currents using oocytes expressing Torpedo nicotinic ACh receptors. LysoPtdCho enhanced the currents in a washing time- and dose-dependent manner (10 nM-1 microM), reaching a maximum of 191% at 20 min after treatment. The currents were enhanced to a lesser extent at higher concentrations, and instead, inhibited to 81% at 10 microM. Likewise, lysoPtdEtn also potentiated the currents to 200% at 10 microM, although its dose-dependent curve shifted to right as compared with that of lysoPtdCho. The current potentiation was blocked by a PKC inhibitor, PKC inhibitor peptide (PKCI), or removal of extracellular Ca2+. In addition, lysoPtdCho and lysoPtdEtn enhanced the currents in mutant ACh receptors lacking PKC phosphorylation sites on the alpha and delta subunits. These results suggest that lysophospholipids such as lysoPtdCho and lysoPtdEtn potentiated ACh receptor currents by Ca2+-dependent PKC activation, but that this effect did not require PKC phosphorylation of the ACh receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.