Abstract

Ornithine decarboxylase (ODC) and the polyamines play an essential role in brain cell replication and differentiation and polyamines also regulate the function of nicotinic acetylcholine receptors (nAChRs). We administered α-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, to neonatal rats on postnatal days 5–12, during the mitotic peak of the cerebellum, a treatment regimen that achieves a chemical knockout of ODC activity and polyamine depletion limited to the treatment period. Although growth inhibition and gross dysmorphology were limited to the cerebellum, both α7 and α4β2 nAChRs were upregulated in adulthood in the frontal cortex, hippocampus and thalamus, with the largest effect in the latter region, primarily in females. Receptor upregulation was accompanied by abnormalities in macromolecular indices of cell packing density and cell membrane surface area, but the generalized cellular alterations did not share the regional or sex selectivity shown by the effects on nAChRs. Elevated DNA concentration was most notable in the hippocampus and was associated with augmented levels of glial fibrillary acidic protein, thus implying gliosis as the cause of the increased number of cells. DFMO’s effects on both nAChR expression and cellular biomarkers resembled those of developmental exposure to nicotine. Accordingly, some of the effects may represent a specific alteration in nAChR signaling evoked by polyamine depletion during a critical developmental window. Alterations in polyamine gating of cholinergic synaptic signaling may thus contribute to the adverse neurobehavioral effects of numerous neuroteratogens that directly or indirectly disrupt the ODC/polyamine pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.