Abstract
This study aims at discussing longitudinal effects on the variability of the vertical E × B drift velocity at low latitudes, specifically over African sector. To this effect, observations from ground-based magnetometers and the Ion Velocity Meter experiment onboard C/NOFS satellite are analyzed in conjunction with equatorial electric field and neutral wind model estimates under geomagnetically quiet conditions in the years 2012-2013. Notwithstanding the limitation in data over Africa, the combination of ground-based and in-situ observations confirmed the existence of longitudinal differences in the E × B between the Atlantic, Western and Eastern African sectors. This was well reproduced by the equatorial electric field model (EEFM) which showed that during noon, the peak of the equatorial electric field (EEF) was the lowest in the Atlantic sector, with an increasing trend towards the Eastern longitude. The Horizontal Wind Model 14 (HWM14) showed that the eastward zonal (poleward meridional) wind velocity was the lowest (highest) in the Eastern sector. Furthermore, the zonal (meridional) wind increased (decreased) from the Eastern to the Atlantic sector. These results highlight the contribution of the neutral wind velocity in driving the longitudinal difference in the vertical drift velocity over Africa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.