Abstract

The asymmetry parameter is an important quantity used in radiative transfer modeling and scattering. This parameter specifies the amount of energy scattered by the particle along the direction of the incident illuminating field. However, a rigorous and complete analysis of the energetic scattering requires determining the energy scattered in the lateral direction as well. As such, the present work introduces generalized expressions for the scattering asymmetry parameters for a dielectric cylinder in arbitrary-shaped light-sheets, both along and perpendicular to the direction of the incident radiation. Both longitudinal and transverse scattering asymmetry parameters are defined, and their generalized expressions are obtained based on the (spatial) average cosine and sine of the scattering angle θ and the expression of the scattering cross section (or energy efficiency). The partial-wave series expansion method in cylindrical coordinates is used, and the resulting mathematical expressions depend on the beam-shaped coefficients and the scattering coefficients of the dielectric cylinder. Numerical results for arbitrary-shaped light-sheets illuminating a dielectric cylinder cross section located arbitrarily in space are presented and discussed. The longitudinal and transverse scattering asymmetry parameters defined here offer additional quantitative (quadratic) observables for the analysis of the energetic scattering in applications in electromagnetic scattering, optical light-sheet tweezers, radiative transfer computations, and remote sensing, to name a few examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.