Abstract
In the past, long-distance free-space quantum communication experiments could only be implemented at night. During the daytime, the bright background sunlight prohibits quantum communication in transmission under conditions of high channel loss over long distances. Here, by choosing a working wavelength of 1,550 nm and developing free-space single-mode fibre-coupling technology and ultralow-noise upconversion single-photon detectors, we have overcome the noise due to sunlight and demonstrate free-space quantum key distribution over 53 km during the day. The total channel loss is ∼48 dB, which is greater than the 40 dB channel loss between the satellite and ground and between low-Earth-orbit satellites. Our system thus demonstrates the feasibility of satellite-based quantum communication in daylight. Moreover, given that our working wavelength is located in the optical telecom band, our system is naturally compatible with ground fibre networks and thus represents an essential step towards a satellite-constellation-based global quantum network. The feasibility of satellite-assisted quantum communication is demonstrated by a field test on the ground. To supress noise due to sunlight the wavelength of 1,550 nm is chosen, and spectrum and spatial filtering technology developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.