Abstract

A novel long-wavelength infrared (IR) photodetector based on Electromagnetically induced transparency (EIT) which is suitable for operation in about room temperature and THz range is proposed and analyzed in detail in this article. The main point in this paper for operation in room temperature is related to convert the incoming long-wavelength IR signal to short-wavelength or visible probe optical field through EIT phenomena. For realization of the idea, we used 4, 5- and 6-level atoms implemented by quantum wells or dots. In the proposed structure long-wavelength IR signal does not interact directly with electrons, but affects the absorption characteristics of short-wavelength or visible probe optical field. Therefore, the proposed structure reduces and cancels out the important thermionic dark current component. So, the proposed idea can operate as long wavelength photodetector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.