Abstract

Infrared polarization results from infrared-emitted radiation and reflected radiation effects. Polarization generated by infrared reflection is perpendicularly polarized, whereas polarization generated by infrared emission is parallelly polarized. Using the polarization feature in different directions can enhance the detection and discrimination of the target. Based on the Stokes vector, the polarization degree and angle are obtained. Then, according to the analysis of the polarization states, an orthogonality difference method of extracting polarization features is proposed. An infrared intensity and polarization feature images are fused using an algorithm of nonsubsampled shearlets transformation. Image evaluation indices of the target contrast to background (C), average gradient (AG), and image entropy (E) are employed to evaluate the fused image and original intensity image. Results demonstrate that every index of the fused image with the polarization feature is significantly improved, thereby validating the effectiveness of the proposed target-enhancement approach using polarization features extracted by the orthogonal difference method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.