Abstract

The long-time asymptotic behavior of solutions to the focusing nonlinear Schrödinger (NLS) equation on the line with symmetric, nonzero boundary conditions at infinity is studied in the case of initial conditions that allow for the presence of discrete spectrum. The results of the analysis provide the first rigorous characterization of the nonlinear interactions between solitons and the coherent oscillating structures produced by localized perturbations in a modulationally unstable medium. The study makes crucial use of the inverse scattering transform for the focusing NLS equation with nonzero boundary conditions, as well as of the nonlinear steepest descent method of Deift and Zhou for oscillatory Riemann–Hilbert problems. Previously, it was shown that in the absence of discrete spectrum the xt-plane decomposes asymptotically in time into two types of regions: a left far-field region and a right far-field region, where to leading order the solution equals the condition at infinity up to a phase shift, and a central region where the asymptotic behavior is described by slowly modulated periodic oscillations. Here, it is shown that in the presence of a conjugate pair of discrete eigenvalues in the spectrum a similar coherent oscillatory structure emerges but, in addition, three different interaction outcomes can arise depending on the precise location of the eigenvalues: (i) soliton transmission, (ii) soliton trapping, and (iii) a mixed regime in which the soliton transmission or trapping is accompanied by the formation of an additional, nondispersive localized structure akin to a soliton-generated wake. The soliton-induced position and phase shifts of the oscillatory structure are computed, and the analytical results are validated by a set of accurate numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.