Abstract

Micro and nanoplastics (MNPs) as emerging contaminants have become a global environmental issue due to their small size and high bioavailability. However, very little information is available regarding their impact on zooplankton, especially when food availability is a limiting factor. Therefore, the present study aims at evaluating the long-term effects of two different sizes (50 nm and 1 μm) of amnio-modified polystyrene (PS-NH2) particles on brine shrimp, Artemia parthenogenetica, by providing different levels of food (microalgae) supply. Larvae were exposed to three environmentally relevant concentrations (5.5, 55, and 550 μg/L) of MNPs over a 14-days of exposure with two food levels, high (3 × 105~1 × 107 cells/mL), and low (1 × 105 cells/mL) food conditions. When exposed to high food levels, the survival, growth, and development of A. parthenogenetica were not negatively affected at the studied exposure concentrations. By comparison, when exposed to a low food level, a U shape trend was observed for the three measured effects (survival rate, body length, and instar). Significant interactions between food level and exposure concentration were found for all three measured effects (three-way ANOVA, p < 0.05). The activities of additives extracted from 50 nm PS-NH2 suspensions were below toxic levels, while those from 1-μm PS-NH2 showed an impact on artemia growth and development. Our results demonstrate the long-term risks posed by MNPs when zooplankton have low levels of food intake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.