Abstract

It has been suggested that thiazolidinediones (TZDs) ameliorate insulin resistance in muscle tissue by suppressing muscle lipid storage and the activity of novel protein kinase C (nPKC) isoforms. To test this hypothesis, we analyzed long-term metabolic effects of pioglitazone and the activation of nPKC-epsilon and -theta isoforms in an animal model of the metabolic syndrome, the spontaneously hypertensive rat (a congenic SHR strain with wild type Cd36 gene) fed a diet with 60 % sucrose from the age of 4 to 8 months. Compared to untreated controls, pioglitazone treatment was associated with significantly increased basal (809+/-36 vs 527+/-47 nmol glucose/g/2h, P<0.005) and insulin-stimulated glycogenesis (1321+/-62 vs 749+/-60 nmol glucose/g/2h, P<0.0001) in isolated gastrocnemius muscles despite increased concentrations of muscle triglycerides (3.83+/-0.33 vs 2.25+/-0.12 micromol/g, P<0.005). Pioglitazone-treated rats exhibited significantly increased membrane/total (cytosolic plus membrane) ratio of both PKC-epsilon and PKC-theta isoforms compared to untreated controls. These results suggest that amelioration of insulin resistance after long-term pioglitazone treatment is associated with increased activation of PKC-epsilon and -theta isoforms in spite of increased lipid concentration in skeletal muscles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.