Abstract

This paper presents a theoretical analysis for the long-term non-linear elastic in-plane behaviour and buckling of shallow concrete-filled steel tubular (CFST) arches. It is known that an elastic shallow arch does not buckle under a load that is lower than the critical loads for its bifurcation or limit point buckling because its buckling equilibrium configuration cannot be achieved, and the arch is in a stable equilibrium state although its structural response may be quite non-linear under the load. However, for a CFST arch under a sustained load, the visco-elastic effects of creep and shrinkage of the concrete core produce significant long-term increases in the deformations and bending moments and subsequently lead to a time-dependent change of its equilibrium configuration. Accordingly, the bifurcation point and limit point of the time-dependent equilibrium path and the corresponding buckling loads of CFST arches also change with time. When the changing time-dependent bifurcation or limit point buckling load of a CFST arch becomes equal to the sustained load, the arch may buckle in a bifurcation mode or in a limit point mode in the time domain. A virtual work method is used in the paper to investigate bifurcation and limit point buckling of shallow circular CFST arches that are subjected to a sustained uniform radial load. The algebraically tractable age-adjusted effective modulus method is used to model the time-dependent behaviour of the concrete core, based on which solutions for the prebuckling structural life time corresponding to non-linear bifurcation and limit point buckling are derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.