Abstract

To prevent periprosthetic osteolysis and subsequent aseptic loosening of artificial hip joints, we recently developed a novel acetabular highly cross-linked polyethylene (CLPE) liner with graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) on its surface. We investigated the wear resistance of the poly(MPC) (PMPC)-grafted CLPE liner during 20 million cycles in a hip joint simulator. We extended the simulator test of one liner to 70 million cycles to investigate the long-term durability of the grafting. Gravimetric, surface, and wear particle analyses revealed that PMPC grafting onto the CLPE liner surface markedly decreased the production of wear particles and showed that the effect of PMPC grafting was maintained through 70 million cycles. We believe that PMPC grafting can significantly improve the wear resistance of artificial hip joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.