Abstract

We use direct-summation N-body integrations to follow the evolution of binary black holes at the centers of galaxy models with large, constant-density cores. Particle numbers as large as 0.4 × 106 are considered. The results are compared with the predictions of loss-cone theory under the assumption that the supply of stars to the binary is limited by the rate at which they can be scattered into the binary's influence sphere by gravitational encounters. The agreement between theory and simulation is quite good; in particular, we are able to quantitatively explain the observed dependence of binary hardening rate on N. We do not verify a recent claim that the hardening rate of the binary stabilizes when N exceeds a particular value or that Brownian wandering of the binary has a significant effect on its evolution. When scaled to real galaxies, our results suggest that massive black hole binaries in gas-poor nuclei would be unlikely to reach gravitational wave coalescence in a Hubble time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.