Abstract
Burned areas in boreal mixedwood forests usually include tree patches that partially or entirely escaped fire. Some of these post-fire residual stands – called fire refuges – can escape several consecutive fires due to particular microsite conditions. Despite their potential importance as biodiversity hotspots, the long-term forest dynamics of fire refuges is unknown. High-resolution analysis of plant macroremains retrieved from forest organic matter profiles sampled in five fire refuges allowed us to describe up to 8000 years of forest dynamics. Our results display the importance of local conditions in forest dynamics. Wildfire was probably prevented by high moisture, as indicated by the presence of aquatic taxa and moisture-tolerant tree species. Lack of stand-replacing fire, coupled with organic matter accumulation, favored the millennial persistence of late-successional tree species. Shifts from spruce/larch dominance to fir/cedar dominance were noted at different occasions during the Holocene, probably resulting from endogenous processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.