Abstract

Li4Ti5O12/LiMn2O4 (LTO/LMO) chemistry was evaluated as a potential candidate for behind-the-meter storage (BTMS) applications. Its long-term cycle performance at 45 °C was tested using ethylene carbonate (EC) and propylene carbonate (PC) solvent electrolytes. Over 1000 cycles, LTO/LMO cells exhibited ~80% capacity retention and Coulombic efficiency higher than 99.96%. Electrochemical test results showed the major degradation mode of LTO/LMO cells arises from continuous electrolyte decomposition at the LTO anode and loss of Li inventory. EC and PC electrolytes created distinct surface layers, where the EC reduction products were more effective in passivating the LTO electrode surface. Dissolution and migration of Mn from the cathode was probed as Mn2+ species distributed throughout the surface layer at the anode. By utilizing a prelithiated LTO electrode, the LTO/LMO cell performance was significantly enhanced with EC electrolyte. On the other hand, PC electrolyte resulted in accelerated electrolyte decomposition at the lithiated LTO surface due to the lack of surface passivation. Thus, mitigating parasitic reactions at the LTO electrode is the key to developing successful LTO/LMO cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.