Abstract

Organic viticulturists utilize copper to prevent and reduce downy mildew (Plasmopara viticola) within the vineyard. Being a heavy metal, copper either builds up in the soil or is leached into the groundwater or taken up by living organisms. Therefore, its use impacts the environment. In organic farming there are currently no copper substitutes available and, therefore, it is necessary to understand the depth of damage that copper is inflicting on soil microbial communities over the long-term. Here a field-scale grid, 4 m by 5 m, was analyzed within a 17 year practicing organic vineyard in Southwestern Germany. Copper fractions, enzyme analyses (phosphatase, arylsulfatase, invertase, urease, xylanase), fungal analyses (ergosterol, fungal PLFA), bacterial analyses (bacterial PLFA), and microbial biomass were measured and spatial distribution maps were interpolated. Readily available and exchangeable copper fractions were higher within the vine rows and lower between them. Total copper ranged from 43 mg kg−1 to 142 mg kg−1, which is above prevention levels for Germany. In areas of high copper, a negative effect on total carbon, ergosterol, as well as phosphatase and invertase enzyme activities was observed. Tillage practices were found to be more important than copper for the distribution of carbon, nitrogen and xylanase activity within the vineyard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.