Abstract

AbstractWater surface temperature is a direct indication of climate change. However, it is not clear how China’s inland waters have responded to climate change in the past using a consistent method on a national scale. In this study, we used Moderate Resolution Imaging Spectroradiometer (MODIS) data from 2000 to 2015 to study the temporal and spatial variation characteristics of water surface temperature in China using the wavelet transform method. The results showed the following: 1) the freezing date of China inland water has shown a significant delaying trend during the past 16 years with an average rate of −1.5 days yr−1; 2) the shift of the 0°C isotherm position of surface water across China has clear seasonal changes, which first moved eastward about 25° and northward about 15°, and then gradually moved back after the year 2009; 3) during the past 16 years, the 0°C isotherm of China’s surface water has gradually moved north by about 0.09° in the latitude direction and east by about 1° in the longitude direction; and 4) the interannual variation of water surface temperature in 17 lakes of China showed a similar fluctuation trend that increased before 2010, and then decreased. The El Niño and La Niña around 2010 could have impacts on the turning point of the annual variation of water surface temperature. This study validated the response of China’s inland surface water to global climate change and improved the understanding of the wetland environment’s response to climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.