Abstract
Cadmium (Cd) is a well-established carcinogen, however, the underlying mechanism, especially the role of epigenetics in it, is still poorly understood. Our previous work has disclosed that when rats were exposed to 0.5mg CdCl2 (kgd) for 8 and 12 weeks, the growth of peripheral white blood cells (WBC) was obviously stimulated but no over-proliferation of granulocyte–monocyte (GM) progenitor cells was observed in the bone marrow, suggesting that the over-proliferation of lymphocyte was promoted by Cd exposure. Is DNA-methylation involved in this Cd-stimulated cell proliferation? The present study found that when human B lymphoblast HMy2.CIR cells were exposed to Cd with a dose lower than 0.1μM for 3 months, both cell proliferation and mRNA expressions of DNA methyltransferases of DNMT1 and DNMT3b were increased, while the mRNA of tumor suppressor gene p16 was remarkably decreased. Furthermore, the level of genomic DNA methylation was increased and the CpG island in p16 promoter was hypermethylated in the Cd-exposed cells. A DNA demethylating agent, 5-aza-2′-deoxycytidine (5-aza-dC), diminished Cd-stimulated cell proliferation associated with p16 overexpression. Our results suggested that the chronic exposure of low dose Cd could induce hypermethylation of p16 promoter and hence suppress p16 expression and then promote cell proliferation, which might contribute to Cd-induced carcinogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research/Genetic Toxicology and Environmental Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.