Abstract

In this paper we focus on the long-term behavior of generalized polynomial chaos (gPC) and multi-element generalized polynomial chaos (ME-gPC) for partial differential equations with stochastic coefficients. First, we consider the one-dimensional advection equation with a uniform random transport velocity and derive error estimates for gPC and ME-gPC discretizations. Subsequently, we extend these results to other random distributions and high-dimensional random inputs with numerical verification using the algebraic convergence rate of ME-gPC. Finally, we apply our results to noisy flow past a stationary circular cylinder. Simulation results demonstrate that ME-gPC is effective in improving the accuracy of gPC for a long-term integration whereas high-order gPC cannot capture the correct asymptotic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.