Abstract

We consider a stochastic control problem with time-inhomogeneous linear dynamics and a long-term average quadratic cost functional. We provide sufficient conditions for the problem to be well-posed. We describe an explicit optimal control in terms of a bounded and non-negative solution of a Riccati equation on [0, infty ), without an initial and terminal condition. We show that, in contrast to the time-homogeneous case, in the inhomogeneous case the optimally controlled state dynamics are not necessarily ergodic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.