Abstract

Anthropogenic CO2 emissions currently decrease open ocean pH, but on multi-millennial time scales intensified continental weathering is expected to contribute to increasing oceanic alkalinity (AT) and thus mitigate the acidification signal. The Baltic Sea is an ideal study site for such AT dynamics, due to its direct link to terrestrial processes, short water residence time and long history of AT measurements dating back to the early 20th century. We compiled an extensive AT data set that revealed the highest data quality and coverage for the past two decades. Within that period, surface water AT levels increased throughout the Baltic Sea. The rates of change were highest in the low-saline, northern areas and decreased gradually toward constant levels in the North Sea. The AT increase observed in the Central Baltic Sea (+3.4 µmol kg−1 yr−1) and the Gulf of Bothnia (+7 µmol kg−1 yr−1) has compensated CO2-induced acidification by almost 50% and 100%, respectively. Further, the AT trends enhanced the CO2 storage capacity and stabilized the CaCO3 saturation state of the Baltic Sea over the past two decades. We discuss the attribution of the AT trends to potential changes in precipitation patterns, continental weathering driven by acidic rain and increasing atmospheric CO2, agricultural liming and internal AT sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.