Abstract

Electrical load forecasting is a key player in building sustainable power systems and helps in efficient system planning. However, the irregular and noisy behavior in the observed data makes it difficult to achieve better forecasting accuracy. To handle this, we propose a new model, named singular spectrum analysis-long short- term memory (SSA-LSTM). SSA is a signal processing technique used to eliminate the noisy components of a skewed load series. LSTM model uses the outcome of SSA to forecast the final load. We have used five publicly available datasets from the Australian Energy Market Operator (AEMO) repository to assess the performance of the proposed model. The proposed model has superior forecasting accuracy compared to other existing state-of-the-art methods [persistence, autoregressive (AR), AR-exogenous, ARMA-exogenous (ARMAX), support vector regression (SVR), random forest (RF), artificial neural network (ANN), deep belief network (DBN), empirical mode decomposition (EMD-SVR), EMD-ANN, ensemble DBN, and dynamic mode decomposition (DMD)] for half-hourly and one day ahead load forecasting using RMSE and MAPE error metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.