Abstract
The unstable anode/electrolyte interface (AEI) triggers the corrosion reaction and dendrite formation during cycling, hindering the practical application of zinc metal batteries. Herein, for the first time, l-cysteine (Cys) is employed to serve as an electrolyte additive for stabilizing the Zn/electrolyte interface. It is revealed that Cys additives tend to initially approach the Zn surface and then decompose into multiple effective components for suppressing parasitic reactions and Zn dendrites. As a consequence, Zn|Zn symmetric cells using trace Cys additives (0.83mm) exhibit a steady cycle life of 1600 h, outperforming that of prior studies. Additionally, an average Coulombic efficiency of 99.6% for 250 cycles is also obtained under critical test conditions (10mA cm-2 /5 mAh cm-2 ). Cys additives also enable Zn-V2 O5 and Zn-MnO2 full cells with an enhanced cycle stability at a low N/P ratio. More importantly, Cys/ZnSO4 electrolytes are demonstrated to be still effective after resting for half year, favoring the practical production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.