Abstract

Raising the distance covered by singlet excitons during their lifetimes to values maximizing light absorption (a few hundred nm) would solve the exciton diffusion bottleneck issue and lift the constraint for fine (∼10 nm) phase segregation in bulk heterojunction organic solar cells. In that context, the recent report of highly ordered conjugated polymer nanofibers featuring singlet exciton diffusion length, LD, in excess of 300 nm is both appealing and intriguing [Jin, X.; et al. Science 2018, 360 (6391), 897-900]. Here, on the basis of nonadiabatic molecular dynamics simulations, we demonstrate that singlet exciton diffusion in poly(3-hexylthiophene) (P3HT) fibers is highly sensitive to the interplay between delocalization along the polymer chains and long-range interactions along the stacks. Remarkably, the diffusion coefficient is predicted to rocket by 3 orders of magnitude when going beyond nearest-neighbor intermolecular interactions in fibers of extended (30-mer) polymer chains and to be resilient to interchain energetic and positional disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.