Abstract

Understanding the chiral light-matter interaction offers a new way to control the direction of light. Here, we present an unprecedently long-range transport of valley information of a 2D-layered semiconductor via the directional emission through a dielectric waveguide. In the evanescent near field region of the dielectric waveguide, robust and homogeneous transverse optical spin exists regardless of the size of the waveguide. The handedness of transverse optical spin, determined by the direction of guided light mode, leads to the chiral coupling of light with valley-polarized excitons. Experimentally, we demonstrated ultra-low propagation loss which enabled a 16 µm long propagation of directional emission from valley-polarized excitons through a ZnO waveguide. The estimated directionality of exciton emission from a valley was about 0.7. We confirmed that a dielectric waveguide leads to a better performance than does a plasmonic waveguide in terms of both the directional selectivity of guided emission and the efficiency of optical power reaching the ends of the waveguide when a propagation length is greater than ∼10 µm. The proposed dielectric waveguide system represents an essential platform for efficient spin/valley-photon interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.