Abstract

A series of intramolecularly hydrogen-bonded N-substituted 3-(piperidine, morpholine, N-methylpiperazine)thiopropionamides and some corresponding amides have been studied with special emphasis on hydrogen bonding. The compounds have been selected in order to vary and to minimize the N...N distance. Geometries, charge distributions, and chemical shifts of these compounds are obtained from DFT-type BP3LYP calculations. 1H and 13C 1D and 2D NMR experiments were performed to obtain H,H coupling constants, 13C chemical shifts assignments, and deuterium isotope effects on13C chemical shifts. Variable-temperature NMR studies and 2D exchange NMR spectra have been used to describe the rather complicated conformational behavior mainly governed by the ring flipping of the piperidine (morpholine) rings and intramolecular hydrogen bonding. Unusual long-range deuterium isotope effects on 13C chemical shifts are observed over as far as eight bonds away from the site of deuteriation. The isotope effects are related to the N...N distances, thus being related to the hydrogen bonding and polarization of the N-H bond. Arguments are presented showing that the deuterium isotope effects on 13C chemical shifts originate in electric field effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.