Abstract

Abstract A high performance imaging system has been used to investigate the signature of long-period, ∼8-hr, wave-like oscillations evident in the OH Meinel (6,2) band emission (peak altitude ∼87 km) during the fall and early winter months. The measurements were made from two mid-latitude sites in the western USA during 1996/7. Previous investigations of the induced temperature perturbations (amplitude and phase) suggest that many of these events exhibit characteristics akin to the mid-latitude terdiurnal tide (Pendleton, 2000). To further investigate the origin of these waves we have performed an initial investigation using the Krassovsky ratio (η) method, to determine the amplitude ratio of the induced perturbations in the zenith OH emission intensity and rotational temperature and to study their phase relationship (φ). A range of values for the magnitude and phase of η were found with a mean value of |η| = 6 ± 2 (range ∼2–10), and φ = −51° ± 21° (range −11° to −94°) with the temperature perturbation always leading the intensity wave. These results are in good agreement with existing high-latitude studies of distinct 8-hr oscillations in the literature. However, comparison with realistic gravity wave and terdiurnal tidal model computations reveal a conflicting situation where the observed negative phase results point more towards a long-period gravity wave interpretation rather than a terdiurnal tide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.