Abstract

In this article we propose the use of a version of the tests of Robinson [32] for testing unit and fractional roots in financial time series data. The tests have a standard null limit distribution and they are the most efficient ones in the context of Gaussian disturbances. We compute finite sample critical values based on non-Gaussian disturbances and the power properties of the tests are compared when using both, the asymptotic and the finite-sample (Gaussian and non-Gaussian) critical values. The tests are applied to the monthly structure of several stock market indexes and the results show that the if the underlying I(0) disturbances are white noise, the confidence intervals include the unit root; however, if they are autocorrelated, the unit root is rejected in favour of smaller degrees of integration. Using t-distributed critical values, the confidence intervals for the non-rejection values are generally narrower than with the asymptotic or than with the Gaussian finite-sample ones, suggesting that they may better describe the time series behaviour of the data examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.