Abstract
An unconventional organic molecule (TBBU) showing obvious long-lived room temperature phosphorescence (RTP) is reported. X-ray single crystal analysis demonstrates that TBBU molecules are packed in a unique fashion with side-by-side arranged intermolecular aromatic rings, which is entirely different from the RTP molecules reported to date. Theoretical calculations verify that the extraordinary intermolecular interaction between neighboring molecules plays an important role in RTP of TBBU crystals. More importantly, the polymer film doped with TBBU inherits its distinctive RTP property, which is highly sensitive to oxygen. The color of the doped film changes and its RTP lifetime drops abruptly through a dynamic collisional quenching mechanism with increasing oxygen fraction, enabling visual and quantitative detection of oxygen. Through analyzing the grayscale of the phosphorescence images, a facile method is developed for rapid, visual, and quantitative detection of oxygen in the air.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.