Abstract

BackgroundOxidative stress, caused by an imbalance between reactive oxygen species and antioxidants, is thought to be an important intrinsic mechanism for aging. Ecologists have tested this hypothesis in birds, although the evidence supporting the link between oxidative stress and lifespan has so far been ambiguous. Two previous studies based on a wide range of different free-living bird species provided contradictory findings: antioxidants were negatively associated with survival rate in one study, but positively associated with longevity in another.MethodsIn this study, we identified possible shortcomings in previous research, and then used the comparative methods to test whether long-lived birds experience less oxidative stress reflected by four blood redox state markers (total antioxidant status, uric acid, total glutathione, malondialdehyde) based on data for 78 free-living species.ResultsRelatively long-lived bird species had high levels of antioxidants (total antioxidant status, total glutathione) and low levels of reactive oxygen species (malondialdehyde). These associations were independent of statistical control for any effects of body mass, sampling effort and similarity among taxa due to common phylogenetic descent.ConclusionsThe direction of these associations is consistent with the oxidative stress theory of aging.

Highlights

  • Oxidative stress, caused by an imbalance between reactive oxygen species and antioxidants, is thought to be an important intrinsic mechanism for aging

  • The markers were chosen for the following reasons (Costantini 2008, 2011; Vágási et al 2016): (1) total antioxidant status, uric acid and total glutathione are nonenzymatic antioxidants deployed to combat free radical insults and might play a role in ageing; (2) glutathione is the most important intracellular, endogenous, nonenzymatic antioxidant with multifaceted physiological effects including integral to the ageing process; (3) malondialdehyde, which results from lipid peroxidation of polyunsaturated fatty acids, is a widely used marker for oxidative stress, can react with deoxyadenosine and deoxyguanosine in DNA and was linked to ageing

  • Based on data for 78 free-living bird species, we found that lifespan was positively correlated with the concentration of antioxidants (TAS, tGSH), and negatively correlated with the concentration of reactive oxygen species (ROS) (MDA), which means that long-lived birds generally suffer low levels of oxidative stress

Read more

Summary

Introduction

Oxidative stress, caused by an imbalance between reactive oxygen species and antioxidants, is thought to be an important intrinsic mechanism for aging Ecologists have tested this hypothesis in birds, the evidence supporting the link between oxidative stress and lifespan has so far been ambiguous. The intuitive logic is that differential rates of aging among species may be due to differences in oxidative stress (Sohal and Weindruch 1996; Finkel and Holbrook 2000; Barja 2004) Ecologists have tested this hypothesis in birds during the last 20 years, there is so far no consistent conclusion.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.