Abstract

Symbiotic associations between Alnus maritima (Marsh.) Muhl. ex Nutt. (seaside alder) and the actinomycete Frankia result in root nodules in which atmospheric nitrogen (N) is fixed. This has led to interest in producing seaside alders with minimal N fertilizer and in using the species on low-N soils. Our objectives were to determine how applied N influences nodulation and to characterize how short-term changes in root-zone N affect the function of established nodules. Seaside alders native to the Delmarva Peninsula (Alnus maritima subsp. maritima) were grown in perlite inoculated with soil from roots of indigenous plants. Plants were treated with N-free Hoagland solution supplemented with ammonium nitrate at 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 4, and 8 mm for 10 weeks. Nodulation decreased as applied N increased. While plants treated with ammonium nitrate at 4 and 8 mm formed nearly no nodules, 0.5 mM resulted in vigorous, healthy plants that formed, on average, 70 nodules. In a second experiment, a nodulated population of seaside alders was established by treating seedlings with 0.5-mm ammonium nitrate in otherwise N-free Hoagland solution for 6 weeks. Plants then were provided ammonium nitrate at 0.5, 2, or 4 mm for two weeks. Acetylene-reduction assays showed that ammonium nitrate at 4 mm suppressed nodule activity. Daily irrigation with N-free solution subsequently led to a rapid depletion of root-zone N and a concomitant resurgence of nodule activity among plants previously provided 2- and 4-mm ammonium nitrate. These results provide useful information on how to manage fertility to optimize nodulation and show suppression of nodule activity caused by N fertilization can be temporary if excess N is leached from the root zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.