Abstract
Considerable amounts of business process event logs can be collected by modern information systems. Process discovery aims to uncover a process model from an event log. Many process discovery approaches have been proposed, however, most of them have difficulties in handling large-scale event logs. Motivated by PageRank, in this paper we propose LogRank, a graph-based ranking model, for event log sampling. Using LogRank, a large-scale event log can be sampled to a smaller size that can be efficiently handled by existing discovery approaches. Moreover, we introduce an approach to measure the quality of a sample log with respect to the original one from a discovery perspective. The proposed sampling approach has been implemented in the open-source process mining toolkit ProM. The experimental analyses with both synthetic and real-life event logs demonstrate that the proposed sampling approach provides an effective solution to improve process discovery efficiency as well as ensuring high quality of the discovered model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.