Abstract

We propose a new method of logic synthesis for dual-rail RSFQ (rapid single-flux-quantum) digital circuits. RSFQ circuit technology is one of the strongest candidates for the next generation technology of digital circuits. For representing logic functions, we use a root-shared binary decision diagram (RSBDD) which is a directed acyclic graph constructed from binary decision diagrams. In the method, first we construct an RSBDD from given logic functions, and then reduce the number of nodes in the constructed RSBDD by variable re-ordering. Finally, we synthesize a dual-rail RSFQ circuit from the reduced RSBDD. We have implemented the method and have synthesized benchmark circuits. We have synthesized dual-rail circuits that consist of about 27% fewer logic elements than those synthesized by a Transduction-based method on average.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.