Abstract

Recently, the toehold-mediated DNA strand displacement reaction has been widely used in detecting molecular signals. However, traditional strand displacement, without cooperative signaling among DNA inputs, is insufficient for the design of more complicated nanodevices. In this work, a logic computing system is established using the cooperative "binding-induced" mechanism, based on the AuNP-based beacons, in which five kinds of multiple-input logic gates have been constructed. This system can recognize DNA and protein streptavidin simultaneously. Finally, the manipulations of the logic system are also demonstrated by controlling programmed conjugate DNA/AuNP clusters. This study provides the possibility of detecting multiple input signals and designing complex nanodevices that can be potentially applied to the detection of multiple molecular targets and the construction of large-scale DNA-based computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.