Abstract
The integration of trucks and drones in last-mile delivery has introduced new capabilities to the transportation industry. These two vehicles simultaneously offer unique features, which have improved performance and efficiency in the process of delivering products. This paper investigates a robust parallel drone scheduling traveling salesman problem with supporting drone, where drone travel times are uncertain and products gradually arrive at a depot over time. In this problem, a truck, a supporting drone, and service drones are located in the depot to deliver products with the goal of minimizing the total completion time. A mathematical model is proposed which is improved using the earliest release dates rule, followed by the development of an exact logic-based benders decomposition algorithm to solve the problem. In this algorithm, customers are initially assigned to the service drones or the truck in a master problem, and subsequent auxiliary problems are addressed utilizing the earliest release dates rule and a dynamic programming algorithm. Finally, various cuts are enhanced through strengthening techniques and sequentially added into the master problem. Numerical experiments demonstrate the efficiency of the improved mathematical model and the proposed algorithm. Furthermore, sensitivity analysis has provided several managerial recommendations for enhancing the delivery system performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.