Abstract

A family of interpolation inequalities is derived, which differ from estimates of classical Gagliardo–Nirenberg type through the appearance of certain logarithmic deviations from standard Lebesgue norms in zero-order expressions. Optimality of the obtained inequalities is shown. A subsequent application reveals that when posed under homogeneous Neumann boundary conditions in smoothly bounded planar domains and with suitably regular initial data, for any choice of \alpha>0 the Keller–Segel-type migration–consumption system u_{t} = \Delta (uv^{-\alpha}) , v_{t} = \Delta v-uv , admits a global classical solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.