Abstract

A natural construction of the logarithmic extension of the M ( 2 , p ) (chiral) minimal models is presented, which generalises our previous model of percolation ( p = 3 ). Its key aspect is the replacement of the minimal model irreducible modules by reducible ones obtained by requiring that only one of the two principal singular vectors of each module vanish. The resulting theory is then constructed systematically by repeatedly fusing these building block representations. This generates indecomposable representations of the type which signify the presence of logarithmic partner fields in the theory. The basic data characterising these indecomposable modules, the logarithmic couplings, are computed for many special cases and given a new structural interpretation. Quite remarkably, a number of them are presented in closed analytic form (for general p). These are the prime examples of “gauge-invariant” data—quantities independent of the ambiguities present in defining the logarithmic partner fields. Finally, mere global conformal invariance is shown to enforce strong constraints on the allowed spectrum: It is not possible to include modules other than those generated by the fusion of the model's building blocks. This generalises the statement that there cannot exist two effective central charges in a c = 0 model. It also suggests the existence of a second “dual” logarithmic theory for each p. Such dual models are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.