Abstract

In networked environments, adversaries may exploit location information to perform carefully crafted attacks on cyber-physical systems (CPS). To prevent such security breaches, this letter develops a network localization and navigation (NLN) paradigm that accounts for network secrecy in the control of mobile agents. We consider a scenario in which a mobile agent is tasked with maneuvering through an adversarial network, based on a nominal control policy, and we aim to reduce the ability of the adversarial network to infer the mobile agent’s position. Specifically, the Fisher information of the agent’s position obtained by the adversarial network is adopted as a secrecy metric. We propose a new control policy that results from an optimization problem and achieves a compromise between maximizing location secrecy and minimizing the deviation from the nominal control policy. Results show that the proposed optimization-based control policy significantly improves the secrecy of the mobile agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.