Abstract

The paper presents a location-based approach to controlling the power of device-to-device (D2D) underlay of a frequency reuse-1 cellular system. The system allows for direct communication to share uplink resources with cellular users. As a result, both D2D and cellular users are experiencing additional interferences in the system. By controlling the output power of the devices, these interferences can be mitigated and the performance of the network can be improved in terms of better spectral and energy efficiency. The proposed location-based target signal-to-interference ratio power control scheme for D2D communications utilizes information about users' locations to estimate the interference level experienced by the receiver of the direct link. Based on this estimation, an appropriate transmit power can be determined. The performance of the proposed power control solution is investigated via system level simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.