Abstract

Location area (LA) planning plays an important role in cellular networks because of the trade-off caused by paging and registration signaling. The upper bound on the size of an LA is the service area of a mobile switching center (MSC). In that extreme case, the cost of paging is at its maximum, but no registration is needed. On the other hand, if each cell is an LA, the paging cost is minimal, but the registration cost is the largest. In general, the most important component of these costs is the load on the signaling resources. Between the extremes lie one or more partitions of the MSC service area that minimize the total cost of paging and registration. In this paper, we try to find an optimal method for determining the location areas. For that purpose, we use the available network information to formulate a realistic optimization problem. We propose an algorithm based on simulated annealing (SA) for the solution of the resulting problem. Then, we investigate the quality of the SA technique by comparing its results to greedy search and random generation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.