Abstract

Software debugging is the process of locating and correcting faulty code. Prior techniques to locate faulty code either use program analysis techniques such as backward dynamic program slicing or exclusively use delta debugging to analyze the state changes during program execution. In this paper, we present a new approach that integrates the potential of delta debugging algorithm with the benefit of forward and backward dynamic program slicing to narrow down the search for faulty code. Our approach is to use delta debugging algorithm to identify a minimal failure-inducing input, use this input to compute a forward dynamic slice and then intersect the statements in this forward dynamic slice with the statements in the backward dynamic slice of the erroneous output to compute a failure-inducing chop. We implemented our technique and conducted experiments with faulty versions of several programs from the Siemens suite to evaluate our technique. Our experiments show that failure-inducing chops can greatly reduce the size of search space compared to the dynamic slices without significantly compromising the capability to locate the faulty code. We also applied our technique to several programs with known memory related bugs such as buffer overflow bugs. The failure-inducing chop in several of these cases contained only 2 to 4 statements which included the code causing memory corruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.