Abstract
Despite the numerous methods to recognize human actions in a video, few are designed for videos containing more than one action over a certain time period. Moreover, existing multiple action recognition methods adopt windowed sequence search strategy. Windowed sequence searching requires an exhaustive trial of window length yielding intensive computation. This work presents a frame-based strategy, capable of searching for maximum score subsequences that correspond to actions. Therefore, start and ending times of all actions are located, and action categories are identified as well. Moreover, contrast mutual information is proposed as a new score function to increase recognition accuracy. Experimental results indicate that the proposed method locates and recognizes multiple actions in a video accurately, even for the conventional single action classification problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.