Abstract

An extension of the modified Shepard interpolation method is presented that allows expansions for the potential energy using different local coordinate sets to be used in a global interpolation. The coordinates used in a given Taylor expansion are determined using a training set of geometries at which the ab initio potential energy is known and that is built up during the construction of the interpolated potential energy surface. The method is applied to the bound state potential energy surface of methanol and a significant improvement in the rate of convergence of the interpolated potential energy surface to the ab initio potential energy is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.